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This Paper considers several problems connected with calculatiug.the 
three-dimensional distribution of electric current in a conducting 
medium, moving along a channel in the presence of a magnetic field. It 
has been found essential to deal with the problem as a three-dimensional 
one because it is impossible to study within the framework of the one- 
dimensional theory such problems as the entry of an electroconducting 
medium into a magnetic field and the effect of non-uniform boundary con- 
ditions around the perimeter of a cross section and in the longitudinal 
direction of the channel. tree-dimensional problems should likewise be 
dealt with when studying the Hall effect. 

It is not practically possible at the present time to arrive at 
accurate solutions of three-dimensional problems on the basis of the Hall 
system of magnetohydrodynamic equations, so that to ease the analysis 
various simplifying models or analogies are created. Approximate solu- 
tions [l-T] are constructed only for a few of the simpler problems. In 
this paper we deal with the problem of the distribution of current when 
an electroconducting medium flows within channels in the general situ- 
at ion, and then certain assumptions are indicated which lead to simpli- 
fied systems of solution. 

1. Three-dimensional boundary value problems are considerably eased 

if the hydrodynamic quantities are known. 

fius motions are known in which the hydrodynamic and the electro- 

dynamic equations are separate and they can be solved consecutively. Jn 

that case the solution of the electrodynamic equations taking into 
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account the velocity distributions are solved from the hydr~yn~ic equa- 
tions and turn out to be exact solutions of the whole system of magneto- 
hydrodynamic equations (Section 2). 

If the flow in the channel takes place under conditions of weak 
magnetohydrodynamic interaction, the hydrodynamic quantities may be con- 
sidered approximately known from the corresponding solutions of conven- 
tional hydrodynamics when there is no magnetic field, and the electro- 
magnetic quantities may be determined with their help. 

The same order of solving can also be applied to the case when 
electromagnetic forces hardly differ from potential ones and therefore 
to a large degree are evened out. In this ease the velocity distribution 
will hardly differ from that of normal hydrodynamics. 

Finally in some cases where there is an arbitrary magnetohydrodynamic 
interaction there exist approximate expressions for velocity and tempera- 
ture in the stream; these are obtained either theoretically or from 
experiment, and they are sufficient for determining the electrical quanti- 
ties from the Maxwell equations and Ohm’s law. 

We are going to assum+? below that one of the above cases prevails and 
the hydrodynamic quantities are known. Then the steady state problem of 
current distribution can be written down 

rotB = 7 J, divB = 0 (1.2) 

From Equations (1.2) the conditions of continuity of electric current 
densi tp ensues 

divj=O (2.3) 

In this expression ‘p is the electro-static potential, fl is the 
electromagnetic induction vector, g magnetic permeability of the medium 
(p = const). Equation (1.1) is in fact a formal expression of Ohm’s law. 
In the general case the conductivity CJ may depend not only on j, B, &, 
the velocity v, the scalar electroconductivity Ial, but also on para- 
meters which represent other properties and conditions of the medium. It 
is evident that all the arguments f, in addition to B, j and & are 

assumed to be known. The system (1.1) to f 1.3) serves to determine R, j 
and 9. If necessary, after solving this, it is Tossible to find correc- 
tions to the hydrodynamic parameters, solving the hydrodynamic equations 
with a known body force and heat generation per unit volume. 
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It should be emphasized that in this paper, as distinct from the so- 

called "kinematic" problems [8], in which exact solutions of the system 

(1.1) to (1.3) are sought, we look for approximate solutions on a basis 

of supplementary assumptions on the properties of the fluid, on the geo- 

metry of the current and the character of the magnetic field. 

2. We will now consider one class of motions where the velocity dis- 

tribution of the medium can be accurately determined independently of 

the equations of electrodynamics. Suppose an incompressible nonviscous 

fluid moves in an infinitely long plane channel - 00 < n < + ~0, - El(x) G 

y <$(x) in the presence of an external field 5 = (0, 0, - R). The 

vector of the external field should satisfy Equations (1.2) when j is 
identically equal to 0. (It is assumed that currents which create the 

field lie outside the region in which the medium is flowing), and it 

follows from this that 3 = B, = const. 

The magnetic field in the fluid may have a z component which need not 

be constant but depends on x and y. It is known [9] that when there is a 

magnetic field which is perpendicular to the plane of flow, the electro- 

magnetic force is potential and j x B/c = -(l/8 n)VB2. In this case the 

velocity distribution can be found from the well-known equations 

rot (vxrot v) = 0, divv=O (2.1) 

which do not contain electromagnetic terms. 

The distribution of current and magnetic field is now found from Equa- 

tion (1.2) and from Ohm's law (1.1) which, taking account of the Hall 

effect, can be written in the following form in many cases of practical 

interest 

j = G ( _v~+ +vxB)---ajxB (2.2) 

Note that if the Hall effect is not taken into account and electrical 

conductivity is assumed to be infinite, the quantity BZ is easily found 

with the help of the "frozen flow" integral of [9]. 

The solution of systems (l.- o), (2.2) is considerably simplified also 

for the case of small magnetic Reynolds numbers Rn = VL/v, (V, L are 
characteristic velocity and channel dimensions, vB = c2/47rya), when 

the magnetic field in the fluid hardly differs from the external field 

B = (0, 0, - 3,). Then if for simplicity we put 0 = const, a = const, 

(and then also o-r = const) and if we take the divergence of (2.2) we 

arrive at the Poisson equation for the potential 

(2.3) 
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where vx(x, y), vy(X, Y) 

The vector components 

thus 

are known from the solution of system (2.1). 

of the current density are expressed through Q 

819 

When u and a are given as functions of the coordinates, instead of (2.3) 

we will arrive at a rather more complicated equation. 

The boundary conditions at the walls of the channel consisting of a 

nonconducting and of ideally conducting sections (dielectrics and 

electrodes), are formulated in the following way. On the dielectrics 

there is no current in the direction perpendicular to the walls. There- 

fore, if we denote the angle between the axis x and the tangent to the 

wall by 6 we obtain from 72.4) 

g (sin 6 + oz co.9 6) - ‘7 (co.3 6 

&vx Bavv =- c (6x sin 6 - cos 6) - c (sin 

(on the dielectrics) 

- 6x sin 6) = 

6 + ozcos6) (2.5) 

At the electrodes, because of the assumption of ideal conductivity, 

Q = const. The values of these constants are tied up with parameters of 

the external electric circuit through Ohm’s law (see Section 3). 

If we assumed that the channels were of infinite length, it is 

essential further to lay down asymptotic conditions, i.e. conditions at 

infinity above and below the stream. Suppose for instance that at in- 

finity the walls of the channel are electrodes, the distance between 

which is constant, and the Hall currents flow freely. Then .~x=-~/& =O 

for 1x1 - a. If at infinity the walls are dielectrics and the conditions 

are such that a division takes place between the charges, then we get 

.i, = i, = 0 when 1x1 - 00. 

F’or the case where the channel has constant width and at infinity 

vY = 0, vz = V = const, this velocity distribution, as follows from Equa- 

tion (2.1)) is maintained along the whole channel. Introducing the func- 

tion Q~ = Q - BVy/c, we get 

A(pl = 0, %Jl az = 0 (at the electrodes) 

Wl 8% 

wZ3F-ay 
(on the dielectrics) 

(2.6) 
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System (2.61 was deduced and solved in &I for two special problems. 

Note moreover that a similar investigation can be carried out for the 

flow of a viscous- fluid; in this case instead of (2.1) we will have the 

Helmholtz equation. 

3. Let us now take a look at fluid flows which take place in the pre- 

sence of a three-dimensional magnetic field when the considerations of 

the preceding section no longer hold. 

We deal with the system (1.1) to (1.3) for an isotropic conductive 

fluid, when Ohm's law can be written down thus 

j:;a(--_TjLvXB) 
C 

(3.1) 

where u and Y, in agreement with the initial basic assumption, are given 

functions of the coordinates. If we apply to (3.1) the operation div we 

arrive at the equation 

cc-(--w-*; j YXB -50~+~(Brotv-vrotB)=O 

which, using (1.2), can be brought to the following form 

For low magnetic Reynolds numbers R, = PX,/vn << 1 the last term in 

(3.2) can be neglected, then 

Bert? the magnetic field strength B can be considered known and 

approximately equals the magnetic field which is applied externally. With 

given values of v and u Equation (3.3), with corresponding boundary con- 

ditions allows the potential 'p to be found, and with the assistance of 

(3.1), the current j. 

The solution of systems (3.1), (1.21, (1.3) becomes much more diffi- 

cult if Rm 21. Because in such a case the external field is distorted 

by the motion of the medium and the quantity B is unknown Equation (3.2) 
should be solved together with Equations (3.1) and (1.2). Sometimes how- 

ever the problem of determining the potential can be separated from the 

dete~ination of the magnetic field. For instance if CT = const, rot v=O 
or (v x B)vlog u = 0, rot v = 0 whilst only the components of the ex- 

ternal macetic field enter the boundary conditions, then the equations 

S(p .= ,$-vC;'p when n(p= --Kj’l~nOC.cp-k,$v:,.if (3.4) 
?l? 
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can be solved independently of the others. Furthermore, from the Equa- 

tions (3.5) 

v,rotB= -ccq+vxB, div B = 0 (3.5) 

the magnetic field strength B is found, and, from (3.1) the current j. 
One such problem is solved in [3]. 

In cases where it is not possible to separate the equations in this 

manner, it is sometimes still permissible to make one further assumption, 

namely to assume that the distribution of the magnetic field is known, 

and thus, again, only to deal with Equations (3.1)) (3.2). ‘Ihis assertion 

becomes clearer if we consider the approximate method of solution as the 

first stage in some system of successive approximations. The accuracy of 

the results then will depend on the accuracy of the quantities V, cr and 

B which are fed into the calculation, whilst the error can be assessed 

by inspection of the equation of the next approximation. 

It should be noted that the magnetic field derivatives have been ex- 

cluded from Equation. (3.2). If th ese were retained the accuracy of the 

approximate solution might suffer considerably, for, with a small error 

given in the field, the error in the given derivatives might be large. 

Going over now to the formulation of the boundary,conditions we 

assume that the channel walls consist of sections with differing, finite, 

conductivity. At the boundary between fluid and wall continuity condi- 

tions should be fulfilled for the normal component of current density 

and the tangential component of the electric field E = -Vq 

(3.6) 

(3.7) 

Here p* is the potential at the channel wall, u* its conductivity -rl 

and T* orthogonal unit vectors in the plane tangential to the surfaces 

separating the media. ?he distribution of potential at the wall is con- 

sistent with an equation of the type (3.2) 

a*nrp* = - vo*v(p* (3.8) 

and also fulfils additional conditions at the external boundary of the 
wall. It is easy to see that when CT* - 0 and u* - Q) we arrive at the 
well-known conditions 

jn=O, dgz ;(vxB), (on the dielectrics) (3.9) 
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ip = const (on the electrodes) (3.10) 

If two electrodes are connected to each other through an external 

circuit with resistance R, and a current J flows from the electrode at 
potential 'pl to the electrode at potential cp,, then the quantities 

q1 - qz, J and R are connected by Ohm's law 

where Si are electrode areas. 

Asymptotic conditions for 9 are obtained from (3.1). Suppose, for in- 

stance, the principal current direction coincides with the x-axis, whilst 

the magnetic field vanishes at infinity. Then both current and potential 

will also tend to zero 

rp=o, v~=O~hen X=&W (3.12) 

If charge separation takes place at infinity, and, therefore the 

current vanishes, we have 

'Jrp= i sXB qhen CZ=+C7D (3.13) 

Any further simplification of the equations written down is usually 

associated with assumptions about straight fluid streamlines: v = (v, 

0, 0). The magnetic field strength component, parallel to the velocity, 

will not then enter the calculation and it becomes easier to specify I%. 

However the solution of three-dimensional problems remains difficult with 

Equations (3.2) and (3.3). For th is reason we deal with two-dimensional 

problems in which the effects of longitudinal and of transverse flows are 

treated separately. 

4. It is especially easy to go over to two-dimensional problems when 

the conductivitv is constant and for small values of R_. Assume that a 

fluid flows along a rectangular channel of infinite leigth, the section 

being ]yI < 6(x), IzI < a(x), whilst the velocity profile, the magnetic 

field and the boundary conditions are symmetrical with respect to the 

plane z = 0, so that the potential cp is, at the outset, an even function 

of 2. Then if we define the operation of taking the mean value with re- 

spect to z in this manner 

and apply it as if it were (X.1) and (3.3) we get 
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<j> =~(-V<cp)+~<~7xB)) 

n(cp>=~(Brotv)--l~,*=o 
These two equations together with the boundary conditions at the walls 

y = f 6 taken as averaged with respect to z, allow indeed of a solution 

to the two-dimensional longitudinal problem at infinity. 

In some cases it is permissible to neglect correlations when working 

out mean values of a product, i.e. to take approximately 

Then Equations (4.1) and (4.2) will take the form of Equations (3.1) 

and (3.3) if in the latter we formally put jz = 0, &%z = 0, u = const, 

J l = <j>, 'p = v and add the component 

This additional term vanishes exactly, for instance, when the walls 

z= 5 Q are nonconducting and on them v = 0 or BY = 0. In the general 

case Equation (4.3) together with the boundary conditions for z = i a 

allow of the exclusion of the unknown $+Bz from (4.2). 

A similar procedure involving taking the mean with respect to coordi- 

nate x over some interval (along the length of the electrode, etc.) leads 

to two-dimensional transverse problems. When we have variable conductiv- 

ity, idependent of the coordinates alon, 9 which the mean is taken, all 

the arguments still remain valid. In the worst case two-dimensional prob- 

lems of the type (4.1), (4.2) can only be resolved by neglecting correla- 

tions when taking the mean of products containing LT. 

Iet us take a closer look at problems with straight line fluid flow 

at small R, in a constant section rectangular channel. The channel walls 

/z/ = a are everywhere nonconducting, whilst at the walls jy/ = 6 there 

are symmetrically positioned electrodes. Suppose a magnetic field is 

created by a magnet whose poles are bounded by planes z = f .zr, 1x1 < x1, 

IYI < Yll for which y1 < 6. To a considerable degree of accuracy, then, 

it is possible to say that within the region of flow Rx = B,(x, z), 
R 
p 1 

= 0, Bz = Cz(x, z) and Cz is an even function of z. When flow takes 

ace in the operation of electric current generation Bz is the "working" 

component of the magnetic field. 

The assumptions which have been made and the condition of rectilinear 
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flow allow Equations (3.1) and (3.3) to be written down in a form con- 

taining only the working component of the field 

With constant conductivity and velocity of flow, by taking the mean 

in z, bearing in mind (3.9), we get 

!j,j = - 5 g(q), (it> = 0 ( - g <rp> -<$q (4.6) 

n<cp>= 0 

The boundary conditions for y = + 6 change their form just as integral 

condition (3.11); in the latter integrals n is taken within the limits 

of the electrode. 

The system (4.6), which represents the electric field and the current 

distribution "averaged out" over the width of the channel, is similar in 

form to the system of equations used in [4-61 for solving plane problems. 

Thus the results of these papers are not only applicable to plane prob- 

lems but to three-dimensional ones as'well. 

5. We now deal with flow of a fluid with anisotropic conductivity 

when Ohm's law has the form (2.1) 

j=o(-_cp+~vyB)--ccajxB (5.4) 

The magnetic field here, as distinct from Section 2, is assumed to be 

three-dimensional. From (5.1) an explicit expression for j can be found 

j = rT:i2FJ [E’ + UB x E’ + CC’B (E’B)l 

where E’ = - VqI + v x B/c, but further transformation to the equation 

for q turns out to be very difficult and, in general, does not lead to 

acceptable results. In particular it is not possible to eliminate from 

the equation the magnetic field derivatives. Vie therefore first of all 

transform Fxpression (5.1) with the help of the equations of motion 

'up = F -t i-jxB (5.2) 

where F is the sum of the inertia and viscous forces. Tf we eliminate 
j x R from (5.1) and (5.2) we will obtain 
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j=o -_Cr+J-VXB)+WF 
( C ( aMg+;p 1 (5.3) 

Now we apply operation div to (5.3), and assuming the magnetic 

Reynolds number to be small, we arrive at an equation similar to (3.3) 

ACP = f B rot v + UC div F (5.4) 

The vector F can here be assumed given because it is expressed through 

known hydrodynamic quantities (velocity v and its derivatives). 

The boundary conditions for 0 on the dielectric are easy to find if 

we insist that the normal current component vanishes 

aa, 
-2; = a 

%n+ f (vxB)n (on the dielectric) (5.5) 

To obtain the conditions on the electrode we eliminate j from (5.2) 

and (5.3) and we project the equations obtained on the tangents in 

directions -rl, TV to the electrode surface. We then observe that on this 

surface 

cp - const, ‘@ 
ac ap ---- ati - Q azi (i = 1.2) (5&j 

and we get 

(on the electrodes) 

It follows from (5.7), in particular, that here the field parallel to 

the velocity component remains, in general, in the equations of the 

problem. 

The condition connecting the potential difference of the two electrodes 

with the external circuit parameters, and expressed through 0 can be ob- 
tained from the following reasoning. Suppose, for instance, that the 

electrodes be locat%d syaunetrically at the walls y = + 6 of a rectangular 

channel Then by definition 

‘p (6) --‘p (- 6) = a) (5, 6, 2) -CD (2, - 6, z) - g lp (x, 6, c) - p(.r, - 6,Z)j 

The second factor on the JJ.1l.S. can be transformed with the assistance 

of (5.2) whilst the L.JI.S. is replaced by JR. Finally we arrive at 
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This equation (it might have a different form with channels of a 

different shape) replaces condition (3.11) fur the case of an anisotropic 

conducting medium. 

lhe asymptotic conditions for the supplementary potential may be ob- 

tained easily from (5.3). In particular, assuming no magnetic field or 

current at infinity 

\TO=;F rhenz== + CO (5.9) 

The transition from three-dimensional to two-dimensional problems in 

the foregoing equations can also be made by the method of taking the 

mean. For instance let us deal with the special case of the flow in a 

constant section rectangular channel, when, as in Section 4, V = (v,O,Of, 

the condition of adherence to the walls is observed and the magnetic 

field has only components Bx and BZ depending on x and z. After taking 

the mean, instead of Equation (5.4) we obtain the two-dimensional 

Poisson equation, and instead of the two conditions (5.71, only one 

Observe that with this magnetic field structure the integral in (5.8) 

reduces to the differences of the magnetic pressures for 6 and - 6, which 

with a symmetrical external field and small induced fields, equals zero: 

Thus condition (5.10) is also considerably simplified and is reduced 

to the form (3.11). 

It should be observed that the considerations outlined in this 

section, can, by analogy with Section 3, be extended to the case where o 

and a be given functions of the coordinates. Additionally Ohm's law can 

be exploited in a more general form which includes the electron pressure 

p, 

If we introduce the supplementary potential 

and we assume that p, = jr, ; = const, then only the constant multipliers 
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change in some of the foregoing equations. For a fully ionized gas the 

assumption of constant j means that the ratio of the electron and ion 

component temperatures is constant over the whole volume, and 5 = T_/ 

(Te + Ti)’ 
c 

Finally we demonstrate that the problems dealt with in this paper re- 

duce, at low magnetic Reynolds numbers to the Poisson equation or to a 

nonhomogeneous elliptical equation of a more general type with linear 

boundary conditions. Additionally, when dealing with actual problems it 

is better to make use of homogeneous equations for which there exist 

effective methods of solution based on the theory of the complex vari- 

able. It would be interesting therefore to study problems on the flow in 

channels with dielectric walls, as then the simpler special solutions of 

nonhomogeneous equations can be obtained, which are essential when going 

over to the homogeneous equations. 
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